Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Clin Anat ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38646730

RESUMEN

Endoscopic endonasal skull base surgery is increasingly prevalent, with its scope expanding from pathogens in the midline region to those in the paramedian region. Maximizing anterior sphenoidectomy is important for the median approach, and lateralizing the pterygopalatine fossa is crucial for the paramedian approach. Maximizing the surgical corridor in the nasal cavity and minimizing damage to neurovascular structures are vital for establishing a surgical field with minimal bleeding, ensuring safe, precise, and gentle procedures. However, the relationship between the maxillofacial and skull base bones in endoscopic endonasal skull base surgery is difficult to understand because these bones are intricately articulated, making it challenging to visualize each bone's outline. Understanding important bones and their related neurovascular structures is essential for all skull base surgeons to maximize the surgical corridor and minimize iatrogenic injury to neurovascular structures. This study aimed to elucidate the role of the palatine bone from a microsurgical anatomical perspective. Three dry skulls were used to demonstrate the structure of the palatine bone and its relationship with surrounding bones. A formalin-perfused cadaveric head was dissected to show the related neurovascular structures. The arteries and veins of the cadaveric heads were injected with red- and blue-colored silicon. Dissection was performed using a surgical microscope and endoscope. In addition, the utilization of the palatine bone as a landmark to identify neurovascular structures, which aids in creating a wider surgical field with less bleeding, was shown in two representative cases. The palatine bone consists of unique complex structures, including the sphenoidal process, ethmoidal crest, pterygopalatine canal, and sphenopalatine notch, which are closely related to the sphenopalatine artery, maxillary nerve, and its branches. The ethmoidal crest of the palatine bone is a well-known structure that is useful for identifying the sphenopalatine foramen, controlling the sphenopalatine artery and nerve, and safely opening the pterygopalatine fossa. The sphenoidal process of the palatine bone is a valuable landmark for identifying the palatovaginal artery, which is a landmark used to safely and efficiently expose the vidian canal. The sphenoidal process is easily cracked with an osteotome and removed to expose the palatovaginal artery, which runs along the pharyngeal groove, just medial to the vidian canal. By opening the pterygopalatine canal (also known as the greater palatine canal), further lateralization of the periosteum-covered pterygopalatine fossa contents can be achieved. Overall, the sphenoidal process and ethmoidal crest can be used as important landmarks to maximize the surgical corridor and minimize unnecessary injury to neurovascular structures.

2.
Neuropathology ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477051

RESUMEN

Since the World Health Organization (WHO) 2016 revision, the number of molecular markers required for diffuse gliomas has increased, placing a burden on clinical practice. We have established an in-house, molecular diagnostic platform using Senshin-Iryo, a feature of Japan's unique healthcare system, and partially modified the analysis method in accordance with the WHO 2021 revision. Herein, we review over a total 5 years of achievements using this platform. Analyses of IDH, BRAF, and H3 point mutations, loss of heterozygosity (LOH) on 1p/19q and chromosomes 10 and 17, and MGMT methylation were combined into a set that was submitted to Senshin-Iryo as "Drug resistance gene testing for anticancer chemotherapy" and was approved in August 2018. Subsequently, in October 2021, Sanger sequencing for the TERT promoter mutation was added to the set, and LOH analysis was replaced with multiplex ligation-dependent probe amplification (MLPA) to analyze 1p/19q codeletion and newly required genetic markers, such as EGFR, PTEN, and CDKN2A from WHO 2021. Among the over 200 cases included, 54 were analyzed after the WHO 2021 revision. The laboratory has maintained a diagnostic platform where molecular diagnoses are confirmed within 2 weeks. Initial expenditures exceeded the income from patient copayments; however, it has gradually been reduced to running costs alone and is approaching profitability. After the WHO 2021 revision, diagnoses were confirmed using molecular markers obtained from Senshin-Iryo in 38 of 54 cases (70.1%). Among the remaining 16 patients, only four (7.4%) were diagnosed with diffuse glioma, not elsewhere classified, which was excluded in 12 cases where glioblastoma was confirmed by histopathological diagnosis. Our Senshin-Iryo trial functioned as a salvage system to overcome the transition period between continued revisions of WHO classification that has caused a clinical dilemma in the Japanese healthcare system.

3.
Cancers (Basel) ; 16(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38473369

RESUMEN

Glioma is one of the most common primary central nervous system (CNS) tumors, and its molecular diagnosis is crucial. However, surgical resection or biopsy is risky when the tumor is located deep in the brain or brainstem. In such cases, a minimally invasive approach to liquid biopsy is beneficial. Cell-free DNA (cfDNA), which directly reflects tumor-specific genetic changes, has attracted attention as a target for liquid biopsy, and blood-based cfDNA monitoring has been demonstrated for other extra-cranial cancers. However, it is still challenging to fully detect CNS tumors derived from cfDNA in the blood, including gliomas, because of the unique structure of the blood-brain barrier. Alternatively, cerebrospinal fluid (CSF) is an ideal source of cfDNA and is expected to contribute significantly to the liquid biopsy of gliomas. Several successful studies have been conducted to detect tumor-specific genetic alterations in cfDNA from CSF using digital PCR and/or next-generation sequencing. This review summarizes the current status of CSF-based cfDNA-targeted liquid biopsy for gliomas. It highlights how the approaches differ from liquid biopsies of other extra-cranial cancers and discusses the current issues and prospects.

4.
Neuroradiology ; 66(3): 333-341, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224343

RESUMEN

PURPOSE: This study aimed to compare assessments by radiologists, artificial intelligence (AI), and quantitative measurement using synthetic MRI (SyMRI) for differential diagnosis between astrocytoma, IDH-mutant and oligodendroglioma, and IDH-mutant and 1p/19q-codeleted and to identify the superior method. METHODS: Thirty-three cases (men, 14; women, 19) comprising 19 astrocytomas and 14 oligodendrogliomas were evaluated. Four radiologists independently evaluated the presence of the T2-FLAIR mismatch sign. A 3D convolutional neural network (CNN) model was trained using 50 patients outside the test group (28 astrocytomas and 22 oligodendrogliomas) and transferred to evaluate the T2-FLAIR mismatch lesions in the test group. If the CNN labeled more than 50% of the T2-prolonged lesion area, the result was considered positive. The T1/T2-relaxation times and proton density (PD) derived from SyMRI were measured in both gliomas. Each quantitative parameter (T1, T2, and PD) was compared between gliomas using the Mann-Whitney U-test. Receiver-operating characteristic analysis was used to evaluate the diagnostic performance. RESULTS: The mean sensitivity, specificity, and area under the curve (AUC) of radiologists vs. AI were 76.3% vs. 94.7%; 100% vs. 92.9%; and 0.880 vs. 0.938, respectively. The two types of diffuse gliomas could be differentiated using a cutoff value of 2290/128 ms for a combined 90th percentile of T1 and 10th percentile of T2 relaxation times with 94.4/100% sensitivity/specificity with an AUC of 0.981. CONCLUSION: Compared to the radiologists' assessment using the T2-FLAIR mismatch sign, the AI and the SyMRI assessments increased both sensitivity and objectivity, resulting in improved diagnostic performance in differentiating gliomas.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Oligodendroglioma , Masculino , Humanos , Femenino , Oligodendroglioma/diagnóstico por imagen , Oligodendroglioma/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Inteligencia Artificial , Diagnóstico Diferencial , Estudios Retrospectivos , Mutación , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/patología , Imagen por Resonancia Magnética/métodos , Astrocitoma/diagnóstico por imagen , Astrocitoma/genética , Isocitrato Deshidrogenasa/genética
5.
Neuroradiology ; 66(2): 187-192, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38127124

RESUMEN

PURPOSE: The cortical high-flow sign with the non-enhancing area was reportedly found to be more frequent with oligodendroglioma, IDH-mutant and 1p/19q codeleted (ODG IDHm-codel) than with IDH-wildtype or astrocytoma, IDH-mutant on arterial spin labeling (ASL) in diffuse gliomas. This study aimed to compare the identification rate of the cortical high-flow sign on ASL in patients with ODG IDHm-codel to that on dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI). METHODS: Participants consisted of 32 adult ODG IDHm-codel patients with pathologically confirmed. Subtraction images were generated from paired control and label images on ASL. For DSC, dynamic T2*-weighted perfusion weighted images were obtained after pre-bolus of gadolinium-based contrast agent. Regional cerebral blood flow/volume maps were generated based on the concentration-time curve and arterial input function. Tumor-affecting cortices without contrast enhancement on conventional MR imaging were targeted. The identification rate of the cortical high-flow sign was compared between ASL and DSC using the Pearson's Chi-Square test. RESULTS: Frequency of the cortical high-flow sign was significantly higher on ASL (18/32, 56.3%; p < 0.001) than on DSC (5/32, 15.6%). All cases with the positive cortical high-flow sign on DSC were identified on ASL. CONCLUSION: ASL effectively identifies the cortical high-flow sign in ODG IDHm-codel, surpassing DSC in identification rates.


Asunto(s)
Neoplasias Encefálicas , Glioma , Oligodendroglioma , Adulto , Humanos , Oligodendroglioma/diagnóstico por imagen , Oligodendroglioma/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Marcadores de Spin , Imagen por Resonancia Magnética/métodos , Mutación , Isocitrato Deshidrogenasa/genética
6.
Cancers (Basel) ; 15(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37686564

RESUMEN

BACKGROUND: Positive-margin resection of external auditory canal squamous cell carcinoma (EAC-SCC) is still a major cause of recurrence. The aim of this study is to examine the clinical impact of positive-margin resection of EAC-SCCs. METHODS: We retrospectively reviewed 40 surgical cases with en bloc temporal bone resection of EAC-SCC at a tertiary referral center from October 2016 to March 2022. RESULTS: Two-year disease-specific, overall, and disease-free survival rates for all 40 cases reviewed were 85.2%, 88.85%, and 76.96%, respectively. En bloc resection with a negative margin significantly improved patient prognosis (p < 0.001). Positive-margin resection was observed in 9/40 cases (22.5%). Insufficient assessment of preoperative images was the cause in two of these cases. Postoperative lymph node metastasis and distant metastasis were observed in cases in which vascular, lymphatic duct or perineural invasion was found on postoperative pathological examination. In addition, three cases in which no vascular, lymphatic duct, or perineural invasion was found exhibited local recurrence during the follow-up period. Of the nine positive-margin resection cases, only two showed no postoperative recurrence. CONCLUSIONS: Once positive-margin resections are confirmed, cases might have a high risk of tumor recurrence, even with the addition of postoperative adjuvant chemoradiotherapy.

8.
Neurooncol Adv ; 5(1): vdad078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37528810

RESUMEN

Background: Telomerase reverse transcriptase promoter (TERTp) mutations are a biological marker of glioblastoma; however, the prognostic significance of TERTp mutational status is controversial. We evaluated this impact by retrospectively analyzing the outcomes of patients with isocitrate dehydrogenase (IDH)- and TERTp-wild-type glioblastomas. Methods: Using custom next-generation sequencing, we analyzed 208 glioblastoma samples harboring wild-type IDH. Results: TERTp mutations were detected in 143 samples (68.8%). The remaining 65 (31.2%) were TERTp-wild-type. Among the TERTp-wild-type glioblastoma samples, we observed a significant difference in median progression-free survival (18.6 and 11.4 months, respectively) and overall survival (not reached and 15.7 months, respectively) in patients with and without phosphatase and tensin homolog (PTEN) loss and/or mutation. Patients with TERTp-wild-type glioblastomas with PTEN loss and/or mutation were younger and had higher Karnofsky Performance Status scores than those without PTEN loss and/or mutation. We divided the patients with TERTp-wild-type into 3 clusters using unsupervised hierarchical clustering: Good (PTEN and TP53 alterations; lack of CDKN2A/B homozygous deletion and platelet-derived growth factor receptor alpha (PDGFRA) alterations), intermediate (PTEN alterations, CDKN2A/B homozygous deletion, lack of PDGFRA, and TP53 alterations), and poor (PDGFRA and TP53 alterations, CDKN2A/B homozygous deletion, and lack of PTEN alterations) outcomes. Kaplan-Meier survival analysis indicated that these clusters significantly correlated with the overall survival of TERTp-wild-type glioblastoma patients. Conclusions: Here, we report that PTEN loss and/or mutation is the most useful marker for predicting favorable outcomes in patients with IDH- and TERTp-wild-type glioblastomas. The combination of 4 genes, PTEN, TP53, CDKN2A/B, and PDGFRA, is important for the molecular classification and individual prognosis of patients with IDH- and TERTp-wild-type glioblastomas.

9.
Neurol Med Chir (Tokyo) ; 63(8): 364-374, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37423755

RESUMEN

We aimed to retrospectively determine the resection rate of fluid-attenuated inversion recovery (FLAIR) lesions to evaluate the clinical effects of supramaximal resection (SMR) on the survival of patients with glioblastoma (GBM). Thirty-three adults with newly diagnosed GBM who underwent gross total tumor resection were enrolled. The tumors were classified into cortical and deep-seated groups according to their contact with the cortical gray matter. Pre- and postoperative FLAIR and gadolinium-enhanced T1-weighted imaging tumor volumes were measured using a three-dimensional imaging volume analyzer, and the resection rate was calculated. To evaluate the association between SMR rate and outcome, we subdivided patients whose tumors were totally resected into the SMR and non-SMR groups by moving the threshold value of SMR in 10% increments from 0% and compared their overall survival (OS) change. An improvement in OS was observed when the threshold value of SMR was 30% or more. In the cortical group (n = 23), SMR (n = 8) tended to prolong OS compared with gross total resection (GTR) (n = 15), with the median OS of 69.6 and 22.1 months, respectively (p = 0.0945). Contrastingly, in the deep-seated group (n = 10), SMR (n = 4) significantly shortened OS compared with GTR (n = 6), with median OS of 10.2 and 27.9 months, respectively (p = 0.0221). SMR could help prolong OS in patients with cortical GBM when 30% or more volume reduction is achieved in FLAIR lesions, although the impact of SMR for deep-seated GBM must be validated in larger cohorts.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/cirugía , Estudios Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Procedimientos Neuroquirúrgicos/métodos , Imagen por Resonancia Magnética
10.
Neuroradiology ; 65(8): 1205-1213, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37308686

RESUMEN

PURPOSE: Isocitrate dehydrogenase (IDH)-wildtype diffuse astrocytic glioma with telomerase reverse transcriptase (TERT) promoter mutation is defined as glioblastoma by the WHO 2021 criteria, revealing that TERT promotor mutation is highly associated with tumor aggressiveness. The aim of this study was to identify features from MR spectroscopy (MRS) and multi-exponential models of DWI distinguishing wild-type TERT (TERTw) from TERT promoter mutation (TERTm) in IDH-wildtype diffuse astrocytic glioma. METHODS: Participants comprised 25 adult patients with IDH-wildtype diffuse astrocytic glioma. Participants were classified into TERTw and TERTm groups. Point-resolved spectroscopy sequences were used for MRS data acquisition. DWI was performed with 13 different b-factors. Peak height ratios of NAA/Cr and Cho/Cr were calculated from MRS data. Mean apparent diffusion coefficient (ADC), perfusion fraction (f), diffusion coefficient (D), pseudo-diffusion coefficient (D*), distributed diffusion coefficient (DDC), and heterogeneity index (α) were obtained using multi-exponential models from DWI data. Each parameter was compared between TERTw and TERTm using the Mann-Whitney U test. Correlations between parameters derived from MRS and DWI were also evaluated. RESULTS: NAA/Cr and Cho/Cr were both higher for TERTw than for TERTm. The α of TERTw was smaller than that of TERTm, while the f of TERTw was higher than that of TERTm. NAA/Cr correlated negatively with α, but not with other DWI parameters. Cho/Cr did not show significant correlations with any DWI parameters. CONCLUSION: The combination of NAA/Cr and α may have merit in clinical situation to predict the TERT mutation status of IDH-wildtype diffuse astrocytic glioma without intense enhancement.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Telomerasa , Adulto , Humanos , Isocitrato Deshidrogenasa/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Imagen de Difusión por Resonancia Magnética/métodos , Astrocitoma/diagnóstico por imagen , Astrocitoma/genética , Astrocitoma/patología , Espectroscopía de Resonancia Magnética/métodos , Mutación , Telomerasa/genética
11.
Neuroradiology ; 65(9): 1415-1418, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37367991

RESUMEN

This study aimed to investigate whether arterial spin labeling (ASL) features allow differentiation of oligodendroglioma, IDH-mutant and 1p/19q-codeleted (IDHm-codel) from diffuse glioma with IDH-wildtype (IDHw) or astrocytoma, IDH-mutant (IDHm-noncodel). Participants comprised 71 adult patients with pathologically confirmed diffuse glioma, classified as IDHw, IDHm-noncodel, or IDHm-codel. Subtraction images were generated from paired-control/label images on ASL and used to assess the presence of a cortical high-flow sign. The cortical high-flow sign was defined as increased ASL signal intensity within the tumor-affecting cerebral cortex compared with normal-appearing cortex. Regions without contrast enhancement on conventional MR imaging were targeted. The frequency of the cortical high-flow sign on ASL was compared among IDHw, IDHm-noncodel, and IDHm-codel. As a result, the frequency of the cortical high-flow sign was significantly higher for IDHm-codel than for IDHw or IDHm-noncodel. In conclusion, the cortical high-flow sign could represent a hallmark of oligodendroglioma, IDH-mutant, and 1p/19q-codeleted without intense contrast enhancement.


Asunto(s)
Neoplasias Encefálicas , Glioma , Oligodendroglioma , Adulto , Humanos , Oligodendroglioma/diagnóstico por imagen , Oligodendroglioma/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Mutación , Glioma/diagnóstico por imagen , Glioma/genética , Biomarcadores , Isocitrato Deshidrogenasa/genética
12.
Sci Rep ; 13(1): 10497, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380755

RESUMEN

Glioblastoma, a malignant tumor, has no curative treatment. Recently, mitochondria have been considered a potential target for treating glioblastoma. Previously, we reported that agents initiating mitochondrial dysfunction were effective under glucose-starved conditions. Therefore, this study aimed to develop a mitochondria-targeted treatment to achieve normal glucose conditions. This study used U87MG (U87), U373, and patient-derived stem-like cells as well as chloramphenicol (CAP) and 2-deoxy-D-glucose (2-DG). We investigated whether CAP and 2-DG inhibited the growth of cells under normal and high glucose concentrations. In U87 cells, 2-DG and long-term CAP administration were more effective under normal glucose than high-glucose conditions. In addition, combined CAP and 2-DG treatment was significantly effective under normal glucose concentration in both normal oxygen and hypoxic conditions; this was validated in U373 and patient-derived stem-like cells. 2-DG and CAP acted by influencing iron dynamics; however, deferoxamine inhibited the efficacy of these agents. Thus, ferroptosis could be the underlying mechanism through which 2-DG and CAP act. In conclusion, combined treatment of CAP and 2-DG drastically inhibits cell growth of glioblastoma cell lines even under normal glucose conditions; therefore, this treatment could be effective for glioblastoma patients.


Asunto(s)
Ferroptosis , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Cloranfenicol/farmacología , Glucosa , Desoxiglucosa/farmacología
13.
Acta Radiol Open ; 12(6): 20584601231184565, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37342484

RESUMEN

We present a case of the T2-FLAIR mismatch sign in glioblastoma, isocitrate dehydrogenase (IDH)-wild type. The T2-FLAIR mismatch sign is known as a highly specific imaging finding of astrocytoma, IDH-mutant. Meanwhile, IDH-wildtype diffuse astrocytic gliomas with telomerase reverse transcriptase (TERT) promoter mutation in adults are defined as glioblastoma in the 2021 World Health Organization Classification of Tumors of the Central Nervous System, fifth edition (2021 WHO classification), which underscores the importance of molecular information in central nervous system tumors. This indicates even glioblastoma, IDH-wild type may be masquerading as lower-grade glioma in histology. The reasons for the discrepancy between tumors with less aggressive histology and poor prognosis caused by telomerase reverse transcriptase promoter mutation of IDH-wildtype diffuse glioma remain unclear. However, glioblastoma, IDH-wildtype should be considered as a potential differential diagnosis even in patients with the T2-FLAIR mismatch sign in diffuse gliomas.

14.
Neurooncol Adv ; 5(1): vdac178, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875626

RESUMEN

Background: Copy number alterations (CNAs) are common in diffuse gliomas and have been shown to have diagnostic significance. While liquid biopsy for diffuse glioma has been widely investigated, techniques for detecting CNAs are currently limited to methods such as next-generation sequencing. Multiplex ligation-dependent probe amplification (MLPA) is an established method for copy number analysis in pre-specified loci. In this study, we investigated whether CNAs could be detected by MLPA using patients' cerebrospinal fluid (CSF). Methods: Twenty-five cases of adult diffuse glioma with CNAs were selected. Cell-free DNA (cfDNA) was extracted from the CSF, and DNA sizes and concentrations were recorded. Twelve samples, which had appropriate DNA sizes and concentrations, were subsequently used for analysis. Results: MLPA could be successfully performed in all 12 cases, and the detected CNAs were concordant with those detected using tumor tissues. Cases with epidermal growth factor receptor (EGFR) amplification, combination of gain of chromosome 7 and loss of chromosome 10, platelet-derived growth factor receptor alpha amplification, cyclin-dependent kinase 4 amplification, and cyclin-dependent kinase inhibitor 2A (CDKN2A) homozygous deletion were clearly distinguished from those with normal copy numbers. Moreover, EGFR variant III was accurately detected based on CNA. Conclusions: Thus, our results demonstrate that copy number analysis can be successfully performed by MLPA of cfDNA extracted from the CSF of patients with diffuse glioma.

15.
J Neurol Surg B Skull Base ; 83(Suppl 2): e40-e48, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35832936

RESUMEN

Objective En bloc and margin-negative surgical resection seems to offer the best prognosis for patients with temporal bone squamous cell carcinoma (TB-SCC). In this study, we summarize the outcomes of surgical cases of advanced TB-SCC (T3-T4) that were managed in two institutions, with an accompanying description of the surgical procedure that was utilized: modified subtotal temporal bone resection (STBR), which involves the en bloc removal of the temporal bone including or transecting the otic capsule. Design This is a case series study with chart review. Setting The study was conducted at two academic tertiary care medical centers. Participants Chart information was collected for all patients who underwent surgical resection of advanced TB-SCC between July 1998 and February 2019. The resulting dataset contained 43 patients with advanced TB-SCC who underwent en bloc resection during the review period. Tumor staging followed the modified Pittsburgh classification. Disease-specific survival (DSS) rates were calculated according to the Kaplan-Meier method. Main Outcome Measure This study shows disease-specific 5-year DSS rate. Results The 5-year DSS rate of the cases who underwent en bloc resection was 79.7%. En bloc lateral temporal bone resection was employed in a total of 25 cases (DSS: 79.0%). En bloc modified STBR was utilized in 18 cases (DSS: 81.7%). Conclusion En bloc margin-negative resection is a reliable treatment strategy for advanced TB-SCC. Modified STBR can be a treatment option for TB-SCC without marked posterior extension.

16.
Sci Rep ; 12(1): 9197, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654812

RESUMEN

This study aimed to determine whether quantitative relaxometry using synthetic magnetic resonance imaging (SyMRI) could differentiate between two diffuse glioma groups with isocitrate dehydrogenase (IDH)-mutant tumors, achieving an increased sensitivity compared to the qualitative T2-fluid-attenuated inversion recovery (FLAIR) mismatch sign. Between May 2019 and May 2020, thirteen patients with IDH-mutant diffuse gliomas, including seven with astrocytomas and six with oligodendrogliomas, were evaluated. Five neuroradiologists independently evaluated the presence of the qualitative T2-FLAIR mismatch sign. Interrater agreement on the presence of the T2-FLAIR mismatch sign was calculated using the Fleiss kappa coefficient. SyMRI parameters (T1 and T2 relaxation times and proton density) were measured in the gliomas and compared by the Mann-Whitney U test. Receiver operating characteristic curve analysis was used to evaluate the diagnostic performance. The sensitivity, specificity, and kappa coefficient were 57.1%, 100%, and 0.60, respectively, for the qualitative T2-FLAIR mismatch sign. The two types of diffuse gliomas could be differentiated using a cutoff value of 178 ms for the T2 relaxation time parameter with 100% sensitivity, specificity, accuracy, and positive and negative predictive values, with an area under the curve (AUC) of 1.00. Quantitative relaxometry using SyMRI could differentiate astrocytomas from oligodendrogliomas, achieving an increased sensitivity and objectivity compared to the qualitative T2-FLAIR mismatch sign.


Asunto(s)
Astrocitoma , Glioma , Oligodendroglioma , Astrocitoma/diagnóstico por imagen , Astrocitoma/genética , Glioma/diagnóstico por imagen , Glioma/genética , Humanos , Isocitrato Deshidrogenasa/genética , Imagen por Resonancia Magnética , Oligodendroglioma/diagnóstico por imagen , Oligodendroglioma/genética , Proyectos Piloto
17.
Surg Neurol Int ; 13: 102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399892

RESUMEN

Background: Glioependymal cysts (GECs) are rare, benign congenital intracranial cysts that account for 1% of all intracranial cysts. Surgical interventions are required for patients with symptomatic GECs. However, the optimal treatment remains controversial, especially in infants. Here, we report a male infant case of GECs that successfully underwent minimally invasive combined neuroendoscopic cyst wall fenestration and cyst-peritoneal (CP) shunt. Case Description: The boy was delivered transvaginally at 38 weeks and 6 days of gestation with no neurological deficits. Magnetic resonance imaging (MRI) at birth revealed multiple cysts with smooth and rounded borders and a non-enhancing wall in the right parieto-occipital region. The size of the cyst had increased rapidly compared to that of the prenatal MRI, which was performed at 37 weeks and 2 days. On the day of birth, Ommaya cerebrospinal fluid (CSF) reservoir was placed into the largest outer cyst. The patient underwent intermittent CSF drainage; however, he experienced occasional vomiting. At 2 months, he underwent combined neuroendoscopic cyst wall fenestration and CP shunt through a small hole. The patient's postoperative course was uneventful and there was no recurrence of the cyst. The pathological diagnosis was GEC. Conclusion: Combined neuroendoscopic cyst wall fenestration and CP shunt are a minimally invasive and effective treatment for infants with GECs.

18.
Br J Radiol ; 95(1133): 20210392, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35138915

RESUMEN

OBJECTIVE: To determine whether the γ distribution (GD) model of diffusion MRI is useful in the evaluation of the isocitrate dehydrogenase (IDH) mutation status of glioblastomas. METHODS: 12 patients with IDH-mutant glioblastomas and 54 patients with IDH-wildtype glioblastomas were imaged with diffusion-weighted imaging using 13 b-values from 0 to 1000 s/mm2. The shape parameter (κ) and scale parameter (θ) were obtained with the GD model. Fractions of three different areas under the probability density function curve (f1, f2, f3) were defined as follows: f1, diffusion coefficient (D) < 1.0×10-3 mm2/s; f2, D > 1.0×10-3 and <3.0×10-3 mm2/s; f3, D > 3.0 × 10-3 mm2/s. The GD model-derived parameters measured in gadolinium-enhancing lesions were compared between the IDH-mutant and IDH-wildtype groups. Receiver operating curve analyses were performed to assess the parameters' diagnostic performances. RESULTS: The IDH-mutant group's f1 (0.474 ± 0.143) was significantly larger than the IDH-wildtype group's (0.347 ± 0.122, p = 0.0024). The IDH-mutant group's f2 (0.417 ± 0.131) was significantly smaller than the IDH-wildtype group's (0.504 ± 0.126, p = 0.036). The IDH-mutant group's f3 (0.109 ± 0.060) was significantly smaller than the IDH-wildtype group's (0.149 ± 0.063, p = 0.0466). The f1 showed the best diagnostic performance among the GD model-derived parameters with the area under the curve value of 0.753. CONCLUSION: The GD model could well describe the pathological features of IDH-mutant and IDH-wildtype glioblastomas, and was useful in the differentiation of these tumors. ADVANCES IN KNOWLEDGE: Diffusion MRI based on the γ distribution model could well describe the pathological features of IDH-mutant and IDH-wildtype glioblastomas, and its use enabled the significant differentiation of these tumors. The γ distribution model may contribute to the non-invasive identification of the IDH mutation status based on histological viewpoint.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Imagen de Difusión por Resonancia Magnética , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Humanos , Isocitrato Deshidrogenasa/genética , Imagen por Resonancia Magnética/métodos , Mutación , Estudios Retrospectivos
19.
Neuropathology ; 42(3): 197-203, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35187715

RESUMEN

The mutation p.K27M in H3F3A (H3 K27M mutation) is mainly detected in diffuse midline glioma. However, recent studies have demonstrated that H3 K27M mutation could also be observed in a subset of gangliogliomas. Importantly, most H3 K27-mutated ganglioglioma cases also harbor BRAF V600E mutation. Herein, we report a rare case of H3 K27M-mutated ganglioglioma grade 3 without BRAF mutation arising in the medial temporal lobe in an elderly man. A small biopsy specimen was sampled. The pathological diagnosis was diffuse astrocytoma. The tumor progressed gradually during an 18-month follow-up period. Gadolinium enhancement on magnetic resonance imaging was noted 36 months after the biopsy. The patient was referred to a hospital for tumor resection. Histological analysis of resected specimens led to a diagnosis of ganglioglioma grade 3 with H3 K27M mutation. The patient underwent concurrent temozolomide chemotherapy with radiotherapy. Although the patient's condition deteriorated after chemotherapy due to disease progression, he survived for more than 23 months after tumor resection. We present this rare case and discuss the involvement of H3 K27M mutation in ganglioglioma grade 3.


Asunto(s)
Neoplasias Encefálicas , Ganglioglioma , Glioma , Anciano , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Medios de Contraste , Gadolinio , Ganglioglioma/genética , Glioma/genética , Histonas/genética , Humanos , Masculino , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Lóbulo Temporal/patología
20.
World Neurosurg ; 159: e479-e487, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34958993

RESUMEN

BACKGROUND: Controversies exist regarding the aggressive recurrence of glioblastoma after bevacizumab treatment. We analyzed the clinical impact of bevacizumab approval in Japan by evaluating the clinical course and relapse pattern in patients with glioblastoma. METHODS: We included 100 patients with IDH-wild-type glioblastoma from September 2006 to February 2018 in our institution. The patients were classified into the pre-bevacizumab (n = 51) and post-bevacizumab (n = 49) groups. Overall, progression-free, deterioration-free, and postprogression survivals were compared. We analyzed the relapse pattern of 72 patients, whose radiographic progressions were evaluated. RESULTS: Significant improvement in progression-free (pre-bevacizumab, 7.5 months; post-bevacizumab, 9.9 months; P = 0.0153) and deterioration-free (pre-bevacizumab, 8.5 months; post-bevacizumab, 13.8 months; P = 0.0046) survivals was seen. These survival prolongations were strongly correlated (r: 0.91, P < 0.0001). The nonenhancing tumor pattern was novel in the post-bevacizumab era (5 of 33). The presence of a nonenhancing tumor did not indicate poor postprogression survival (hazard ratio: 0.82 [0.26-2.62], P = 0.7377). The rate of early focal recurrence was significantly lower (P = 0.0155) in the post-bevacizumab (4 of 33) than in the pre-bevacizumab (18 of 39) era. There was a significant decrease in early focal recurrence after approval of bevacizumab in patients with unresectable tumors (P = 0.0110). The treatment era was significantly correlated with a decreased rate of early focal recurrence (P = 0.0021, univariate analysis; P = 0.0144, multivariate analysis). CONCLUSIONS: Approval of first-line bevacizumab in Japan for unresectable tumors may prevent early progression and clinical deterioration of glioblastoma without worsening the clinical course after relapse.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Bevacizumab/uso terapéutico , Neoplasias Encefálicas/patología , Glioblastoma/patología , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Pronóstico , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...